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Abstract

This paper reports a nonlinear fuzzy modeling study of a molten carbonate fuel cell (MCFC) stack by an identification method. MCFC is a
complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. The Takagi—Sugeno (T-S)
fuzzy model is suitable to model a large class of nonlinear MIMO system. In this paper, a MIMO T-S fuzzy model is used to represent MCFC. An
identification method is used to determine both the nonlinear parameters of the antecedents and the linear parameters of the rules consequent in the
T-S fuzzy model. The simulation tests reveal that obtained T-S fuzzy model using the identification method can efficiently approximate the static
and dynamic behavior of a MCFC stack. Furthermore, based on this proposed T—S fuzzy model, valid control strategy studies such as predictive

control, robust control can be developed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The molten carbonate fuel cell (MCFC) is an energy conver-
sion device that produces electricity by the indirect combination
of hydrogen and oxygen to water via an electron-carrying elec-
trolyte. MCFC is one of the fuel cell technologies that have
proven efficiency and environmental performance [1]. In the
development of fuel cell technologies, the mathematical model-
ing is an important tool, which has the capability of predicting
the fuel cell performance [2]. The results obtained from areliable
and effective model can be very useful to guide future research
for fuel cell improvements and optimization. At the same time an
effective model of the MCFC stack, is a prerequisite for control
analysis and controller design.

As far as we known, the MCFC is a nonlinear multi-input
and multi-output system. It is very difficult to model the MCFC
system by the traditional methods. During the last several
decades, various mathematical models have been established
in the research on the internal mechanisms, ranging from a one-
dimensional model to a three dimensional model [3-5]. These
models are very useful for cell design and performance analy-
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sis. However, these models are too complicated to be used for
control studies.

To meet the demands of developing valid control strategies,
some researchers have attempted to establish novel fuel cell
models by statistical data-driven approach. The artificial neu-
ral network (ANN) has been used to derive a solid oxide fuel
cell (SOFC) model from the experimental data quickly [2]. Shen
etal. [6] proposed a RBF neural networks identification technol-
ogy to set up the nonlinear temperature model of MCFC stack.
Jemei et al. [7] utilized ANN methodology for proton exchange
membrane fuel cell (PEMFC) model. The AutoRegression with
exogenous signal (ARX) identification algorithm was applied
to computer linear SOFC system models [8]. The Hammerstein
nonlinear system approach was used for identification of the
SOFC model [9]. The support vector machine (SVM) was used
to modeling study of the PEMFC and SOFC system [10,11].
However, most of modeling methods are in the point of steady-
state models (I-V characteristics) or the single output, and these
black-box models do not give much insight into the system being
modeled.

Fuzzy models have proved to be useful in nonlinear dynamic
system modeling. Several modeling methods based on fuzzy
reasoning have been proposed in recent years, which can be
roughly classified into the fuzzy relational model, the neural-
network-based fuzzy model, the T-S fuzzy model and the
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Nomenclature

AR frequent factor of the resistance

Ag,, Ap, Ag coefficients of the cell inherent perfor-
mance

Cao) total concentration of anode (cathode)

C; heat capacity of the cell unit (J (kg K)~h

E thermodynamic voltage (V)
E° reversible potential of the cell (V)
F Faraday constant (96,485 C mol~1)

F;“(Fé“) anode (cathode) total inlet mole flow (mols~!)

Ff;(Fé‘}) molar flow rates of the ith reactant at the cell
input of anode (cathode)

Fp(F2;) molar flow rates of the ith reactant at the cell
output of anode (cathode)

F, (F¢,;) reaction rate of the ith reactant of anode (cath-
ode)

/:l;_l(c)_. channel height of anode (cathode) (m)

h;rfi(hlclji) anode (cathode) inlet partial molar enthalpies
(Jmol™1)

h? partial molar enthalpies at stack temperature
(Jmol™1)

AHpg, AH, activation energy of internal resistance, and
AHop,, AHco, anode and cathode gas

1 current (A)

J current density (A m—2)

M?® mass of the cell unit (kg)

Ncell cell number

p gas pressure

Py stack dc power (W)

R gas constant (8.3145J (mol K1)

Rai(Rc;) anode (cathode) total rate of production of
species (mol s~ 1)

Rohmic  ohmic resistance (2 m~2)
s cell active area (m?)
T° stack solid average temperature (exit temperature)

(K)

TIn(Ti") inlet temperature of anode (cathode) (K)

uf(uox) fuel (oxidant) utilization

Ve cell voltage (V)

x;‘}i (xiC‘}l-) anode (cathode) inlet mole fractions

xg(x2;) anode (cathode) outlet mole fractions

Zy(Z;) impedance for electrode polarization of anode
(cathode) (2 m~2)

fuzzy basis function based model. Compared with other mod-
els, the T-S model needs less rules, each rule’s consequence
with linear function can describe the input—output mapping in
a large range, and the fuzzy implication used in the model
is also simple [12]. Takagi—Sugeno (T-S) fuzzy model has
the ability to approximate a large class of static and dynam-
ical MIMO nonlinear systems. There exist a large number
of research papers on the application of model identifica-
tion successfully and control strategies for T-S fuzzy model
[13—-15]. However, the concrete study of modeling multivari-

ate MCFC using T-S fuzzy model cannot be found in prior
papers.

In this paper, a nonlinear MIMO T-S fuzzy modeling of a
molten carbonate fuel cell (MCFC) stack is built with an iden-
tification method. T-S fuzzy model consists of if-then rules
with fuzzy antecedents and mathematical functions in the con-
sequent part. Antecedent identification by which the MCFC
inputs—outputs variable space is divided into many subspaces
(rules) is implemented based on the principle of Fuzzy C-Means
clustering method. In every rule, the consequent part parame-
ters that make the nonlinear MCFC characteristic to be fitted
by a linear model are identified by using the Kalman filtering
algorithm. In the process of fuzzy modeling, a novel way is intro-
duced to determine satisfactory number of rules. In our study, the
proposed MIMO T-S fuzzy model of MCFC is built with data
obtained from a physical model of 10 kW MCFC. The encourag-
ing results from this study demonstrate that there is a potential to
introduce the nonlinear fuzzy modeling to development of fuel
cells by the data obtained from various fuel cell experiments in
the future application.

2. MCFC dynamic physical model
The proposed model is based on the following assumptions:

(1) Stream mixture thermodynamic properties follow the ideal
gas mixture law.

(2) A uniform gas distribution among cells is supposed.

(3) All cells have the same temperature and current density.

(4) Fuel processor dynamics are not considered.

2.1. Electrochemical model

The basic structure of a single cell is shown in Fig. 1. There
are two main sets of chemical kinetics. This chemical kinetics
are those associated with anode reactions, cathode reactions.
In the following equations, R vector is used to represent rate
(respectively) of five individual species, which are hydrogen,
carbon dioxide, water, oxygen and nitrogen.

e anode: Hy + CO32~ — COy + HyO +2e~

R, = |:_Ncelll Neenl  Neenl 0 0}
2F 2F 2F
| Top separator |

H, @h 7 Hh0+CO,

Anode ||| LI ALY

ey

3

Current
collector

Cathode I

1/20,+C0, Z;’L

| Bottom separator |

Electric load

Fig. 1. Principle of electricity generating in a MCFC single cell.
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where using the ideal gas law, the exit stream total concentration
becomes Cy(c) = pa(c)/RT°. The compartment volume Va(c) equals
to shy(c). The fuel utilization us = NeenJs/2FF) in "‘

2.2. Thermal model

The fuel cell power output is closely related to the temper-
ature of the cell unit. Assuming that energy accumulates only
in the stack solid mass, gas mixtures are ideal, and exit stream
temperatures are equal to the solid stack temperature, the energy
conservation equation is [16]:

5
M“Cj, - = [Zx (R —hO] — > h{Ra;
i=1
. 5 . .
+ES Zx::r,]i(h]cr,]i —h)
i=1
5
- Zh?Rc,i - Qloss - Pdc (4)
i=1

Under the ideal gas supposition, the partial molar enthalpies are
calculated by the formulation:

T
Bizﬁfef+/r cp.i(u)du 5)

ref

And the coefficients of the specific heats ¢, ; are encountered in
standard reference tables:

Cp.i =a; + biT + ¢;T*> + d;T> + ¢;T* 6)
2.3. Operating cell voltage

The empirical relationships developed in previously reported
work [17] are employed to estimate a voltage drop in a fuel cell.

The cell-unit performance of the electric power generation is

expressed:
Viac = E — (Rohmic — Za — Zc)J @)

where E is given by the Nernst potential:

RT PHy, apo/2 cPCOzc

E=E'+ _—In (8)
2 PH20,2PC0Osa
and
o 4184 x [58.3 —(0.0113+9.6 x 107 /T)T]
E* = )
2F
AHg
Rohmic = Agrexp | — RT (10)
AH,\ o5
Zy = AR, Texp (— RT ) P, (1)
AHo,\ _075 05
Z. = ApTexp <_RT> Po, " PCo,
AHco,\ _i10
+ AgT exp <— RT )Pcoz (12)

In Egs. (8)—(12), T is the arithmetic average of cathode
inlet and exit temperature. Anode and cathode partial pres-
sures are arithmetic averages of inlet and exit gas partial
pressures:

Tin 4+ 7°
T=-—°*— 13
2 (13)
Xatei T ¥a(o).i

(14)
2pa(c)/ Patm

Pa(c),i =

3. T-S fuzzy modeling
3.1. Problem formulation

We consider a MCFC system G(U, Y) as a MIMO sys-
tem, let u(u € U € R") be input variable and y(y e Y € R9)
output variable. For the MIMO system, it can be divided into
g multi-input and single output (MISO) system, and each of
MISO can be fit by a fuzzy T-S model independently [14]. We
define:

{ujyg = [ujk), ... ,ujk —n,, + 1] (j=1,....n),
itk = i), ... yitk —ny + D1 (=1.....9)

with Ny, and ny, are the order of u; and y,, respectively, then
each MISO subsystem can be denoted as follows:

yitk+1) = flxk)) (=1,....9) s)

with x(k) = Hur (O}, ... {ur(OYg e, I OYpr, -,
{yq(k)}qu] = [Xkys ooy Xk, ] 1S the regression data vec-
tor consisting of input—output data at the kth instant and
before.



F. Yang et al. / Journal of Power Sources 166 (2007) 354-361 357

The T-S fuzzy model with linear consequents employed to
fit the MISO subsystem in this paper is a collection of fuzzy
rules, which is in the form of “If. .. then...” The ith rule of the
Ith output 3 ;(k + 1) is given by:

Ryt If x(k) is Ag, then

itk + 1) = plo+ phoxe + -+ phaxi, (=1.....0
(16)

where ¢ is the number of rules, and Al = {Al,, ...,

Al is
the set of membership functions associated to the ith rule. pé =
[ pﬁ)o, pi] ey pin] is the parameter vector of the ith submodel
(rule).

If the method of product fuzzy inference and weighted mean
is employed, the output of the T—S fuzzy model is inferred as

follows:

Yo mi(k)3ritk + 1)

wk+1) =
itk + 1) S o

a7)

pi(k) = [ [ ik (18)
j=1

where ; (k) is the match degree of the component xi; with
respect to Af’ ¢ Mi(k) is the match degree of x(k) with respect
to Aﬁ, namely the membership degree of x(k) in the ith
rule.

The antecedent part of “If...” in the form of fuzzy set, is
equal to fuzzy partition of data space of the MCFC plant, and the
consequent part of “then . ..” represented by a linear functional
relation, is a linear composition of input—output variables. The
identification problem that we want to solve is to find the fuzzy
MCFC model of reasonable complexity that minimizes the error
variance between the fuzzy MCFC model output and the real
MCEFC stack output. In this model, what is to be partitioned is the
whole space spanned by regression data vectors. We separate the
identification of the fuzzy model into two parts—antecedent and
consequent identification. All the subsystems (y;(k + 1) =f(x(k)),
I=1,...,q9) can be identified independently in the same
way, so the subscription [ is omitted in the following
description.

{xx: k=1,...,N} be a set of N sample data from the real plant.
Each sample x; = [xk,, Xk, . . . , Xk, ] has n components.

The FCM algorithm was introduced by Bezdek [18]. In this
paper, FCM algorithm is used to partition the collection of N
data from real MCFC stack into ¢ fuzzy clusters. In the fuzzy
modeling, the ¢ means the number of fuzzy rules. The idea of
FCM is using the weights that minimize the total weighted mean-
square error:

N ¢ N ¢
T VY=Y (i)™ dg =Y (ia)" llxx — vil

k=1i=1 k=1i=1

19)

where iy is the membership degree of the kth sample in
the ith cluster. p is the matrix pw={u;x} which satisfies:
Wik €10, 1], Ef:lﬂi,k = 1. The exponent m is a real number
greater than unity. V = [vy, vy, ..., v.] represents the center of
each cluster. The dj is the distance from x; to v;. Local minimiza-
tion of the function J is accomplished by repeatedly adjusting
the values of u;x and v; according to the following relation:

1
> 1 (dig/d ) ™!

_ Z;jc\,:lﬂkak
= N
D k=1 'U“Zlk

Hik = (20)

@1

Ui

3.3. Consequent then-part identification

The consequent part of the fuzzy rule is identified by using
the Kalman filtering algorithm.

Given the data x; where k represents the kth sampling, the
(k+ 1)th predictive output $(k + 1) of fuzzy model, can be
obtained by formulation (17). Let Bx; = pi(k)/>_;_, ni(k), then
$(k + 1) can be written as:

c
S+ 1) =" Bui (Pig + PiyXx, + -+ + Piy k) (22)

1

While x; =[x, Xky, ..., Xk, ] (k=1, 2,...,N) represent the
data of n dimension input variables of MCFC, and Y=[y;,
¥2,....yn] arethe outputs, and the B = (Bk,, Bk, - - - » Br.) can
be calculated. The outputs can be expressed from (22) using the
matrix form as follows:

Y=hP (23)
Pir... PBic... xuPir-.. xt1Pie--- XPiri-.. XPie
Bar... PBoc... xPa... x21P2... XouP21... XomPoc
h= (24)
Byi--o BNe.-o XNIBN1-.. XNIBNc... XNnBN1--o XNnBNed yoniny
P =[p10, P20s - - -5 Pc0s P11s P21s -+ Pcls -+ Pl
3.2. Antecedent if-part identification P e pCﬂ]/c(n—H)xl (25)

Antecedent identification is implemented by fuzzy clustering
based on the principle of Fuzzy C-Means (FCM) algorithm. Let

The consequent parameter vector P can be estimate by Eq.
(23). To void the computationally expensive matrix inversion
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operation, the Kalman filtering algorithm is applied in this
paper. The Kalman filtering algorithm enables calculation of
the new, adapted values of parameters of the antecedent part,
on the basis of the new sample and the known parameter values
[19]. Here, we apply it to calculate the parameter vector P as
follows:

o Skt kg — hiy1 Po)

Py = P+ (26)
" Q + his1 Sehy
Sph!,  hpaqS
Skt = S — k1AL @7)
0 +hk+lskhk+1
k=0,1,2,...,N—1 (28)

where Py is the estimated parameter vector. Py is zero vector. The
hi1 1s the (k+ 1)th row of matrix A, and yg4 is the real output
of (k+ 1)th sample point. So = o/ (I is an identity matrix and « is
a large positive number), and Q =exp(—N/z) (N represents the
iteration counter and z is a constant).

3.4. Fuzzy modeling procedure

The number of fuzzy rules is an important factor that affects
the performance of a fuzzy model. The choice of an appropri-
ate number of rules is crucial to the design of fuzzy systems
because practical considerations usually need to keep the num-
ber of rules as low as possible to reduce complexity. While
too many redundant rules result in a complex fuzzy model and
increase difficulties of implement, too few rules produce the
fuzzy model cannot approximate a real plant. In the paper, the
cluster number ¢ in FCM algorithm corresponds to the number of
“If...then” rules. However, for many kinds of clustering meth-
ods, including FCM algorithm, clustering number ¢ is always
needed in advance. Here, a novel way [15] to determine the
cluster number (namely the number of fuzzy rules) is intro-
duced to the fuzzy modeling. Let the clustering method start
with ¢ =2. Then determine whether a new cluster center should
be increased or not by evaluating modeling results. Root mean
squared error (RMSE) is employed here to evaluate modeling
results:

RMSE =

5
= Gk — w)? 29)
N k=1

where N is the number of sample data from the real MCFC stack,
Vi is the predictive output of fuzzy model and yy, is the output of
the real MCFC stack. If the modeling result is not satisfied, from
the given sample data, a sample x; that is most different from
the existing cluster centers V = [vy, va, ..., v.] can be fined as
a new center v.41. Where the following definition for ve41:

k = arg;min Z (it — k) (30)

1<i,j<c

i#]

Vel = Xk

Initialize partition matrix u, (randomly),
fuzzyfication exponent m, and the stop
criterion (g > 0)

c=2

L

Estimate  the Antecedent model
parameters using FCM, by matrix w

Identify  the  consequence  model
parameters using Kalman filter algorithm,

end

No
find out a sample %k
k=argemin >, (= )

1=ij<c
iw]

l

V=%V =[v, vy o

‘I,’{. ’ "‘!‘+1]

Update pg = [#ik]c.)y Using (20)

c=c+1 |

Fig. 2. Flowchart of the fuzzy modeling method.

Start with V = [vy, va, ..., ve4+1] as initial cluster centers,
and compute the new not-random partition matrix wg. Then
FCM algorithm is applied to divide the sample data into c+1
parts again. Do the above steps again until the result is sat-
isfactory. Then the T-S fuzzy model can be obtained by the
antecedent and consequent identification methods. The basic
design steps of the modeling method are depicted in Fig. 2.

4. Results

As we know, output voltage and the temperature are the core
of any fuel cell modeling. For a given MIMO MCEFC stack, the
output voltage and the temperature are influenced by many oper-
ating parameters such as current density, temperature, pressure,
fuel utilization (ur), oxidant utilization (u.yx ), and gas flows, etc.
However, in practice, the gas flows must vary within the allow-
able gas utilization range considering the safe operating areas
of a plant. Up to now, no model has ever been able to accom-
modate all these operating parameters. Our T—S model is no
exception. In our experiment, the MCFC can be regarded as a
system with two-input (i, uox) and two-output (Vgc, 7°), and
current density J is considered to be a disturbance and other



F. Yang et al. / Journal of Power Sources 166 (2007) 354-361

operating parameters are held constant. Define the following
input—output relations:

vk + 1) = flusk), uox(k), J(k), yv, (k) €1y}
Jrotk + 1) = flus(k), uox(k), J(k), yro(k)) (32

where Jv,., jro are the predictive outputs of fuzzy model and
V4> Y7o are the outputs from the real MCFC stack. The order
of inputs and outputs can be increased according to a concrete
system. This above simplification does not impair the valid-
ity of our study, which is aimed at modeling MCFC by the
proposed method in this paper. The proposed fuzzy modeling
method is used to identify a T-S fuzzy model of MCFC based
on simulation data.

4.1. Preparing simulation data

The 10 kW MCEFC stack is used in the simulation. The stack
consists of 25 cells with the anode and cathode in co-flow. The
effective electrolyte area of the cell is 0.4 m?, and the electrolyte
tile between anode and cathode consists of mixed carbonate of
Li;CO3 and K,COj3. The compositions of fuel and oxidant are
set at constant values. The dynamic physical model as shown in
Section 2 replaces the real MCFC stack to generate the simula-
tion data required for the identification of the T-S fuzzy model.
The parameters of this fuel cell are given in Table 1. The data
sources blocks developed in MATLAB based on Section 2 is
shown in Fig. 3. For the purpose of identification, the dynamic
physical model is excited with uniformly random input signals
included the fuel utilization (40-90%), the oxidant utilization
(10-80%), and the current density (100—1800 A m~2). To obtain
values at integer time points, the fourth-order Runge—Kutta
method was used to find the numerical solution to the dynamic
physical model in the simulation. A set of 10,000 data was col-
lected from the simulation. The first 6000 data were used for the
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Table 1

Parameters of the MCFC stack used in the fuzzy modeling

Parameter Unit Value

N, cell 25

Pyc kW 10

J Am™? 100-1800
Ve A% Variable

uf 0.4-0.9

Uox 0.1-0.8

K m? 0.4

hy m 12x1073
he m 2x 1073
s, kgm™3 7900

AR 6.43 x 1072
AHg kJmol~! —25.5

AR, 8.11x 107
AH, kJ mol~! —74.4

Ap 2.10 x 10710
AHo, kJ mol~! —834

Ag 1.58 x 107>
AHco, kJmol~! —7.12

Tin K 873

Tin K 823

x;i'Hz Mole fraction 0.64

x;,'coz Mole fraction 0.2

x;‘?HZO Mole fraction 0.16

xé?coz Mole fraction 0.3

XL‘,]NZ Mole fraction 0.553

xic‘}OZ Mole fraction 0.147

identification of a T-S fuzzy model of the fuel cell, while the
remaining 4000 data were used for validation purposes.

4.2. Predicting with the MIMO T-S fuzzy model

The parameters pre-specified in the modeling method as
shown in Section 3.4 are the exponent m=2, stop criterion

I-»mt 0
uf I =l em
@I S P L
u -
uox "I’gk P 0 I 'Ql
I_’ _l; H2 To
’.{ K- thermal model
J
R_H2 L To
To Xa_H2 }—|Xa_H2
»|Fa Xa_CO2 | Xa_CO2
Xa_H20 | Xa_H20 Vdc
> Fe Xc_02 f—{Xc_02
>R H2 Xc_CO2 | Xc_CO2
]
electrochemical model
output voltage model N
X - Ll
Vdc
Product

i

Fig. 3. Data sources of T-S fuzzy modeling.
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=== ul=70%,u0x=40%(physical model)
+ ul=40%,u0x=40%(physical model)
uf=90% u0x=70%(physical model)
uf=90% u0x=70%(T-S model)
uf=70% ,u0x=40%(T-S model)
uf=40%,u0x=40%(T-S model)

*
l0l+|

Voltage(V)

1 L 1

1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

L

Current density(A/m?)

Fig. 4. J-Vy chart.

£=0.15, and a=10°. After fuzzy modeling of Section 3.4, a
T-S fuzzy model is obtained, which can be used to predict new
input data. The estimated optimal number of fuzzy rules is equal
to 12. The RMSE of output voltage obtained in training and test
processis 0.1028 and 0.1172 respectively. The RMSE of temper-
ature obtained in training and test process is 0.1249 and 0.1283
respectively. The static J-Vq. characteristics generated by the
T-S fuzzy model showed good consistency with the physical
model under various utilization, as can be seen in Fig. 4. Now
the T-S fuzzy model is used to predict the dynamic characteris-
tics of the physical model. The step changes in the stack current
density (from 1000 Am~2 to 1500 Am~2) and fuel utilization
(from 80% to 85%) are applied with 50% oxidant utilization. The
comparison between predicted (T—S model) and experimental
(physical model) output voltage dynamic curves is represented
in Fig. 5. At the same time, the predicted and experimental tem-
peratures are shown in Fig. 6. From Figs. 4-6, we can see the
obtained MIMO T-S fuzzy model can approximate the static
and dynamic behavior of the physical MCFC model with good
accuracy.

—— Physical model
— T-S model

Voltage(V)
=

1 1 1

15 1 1 1 1 1
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Time(s) x 104

Fig. 5. Output voltage dynamic response.

930 T T T T T
= Physical model
929 | — T-S model 4

928

927

926

925

924

Temperature(K)

923

0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5 1.6
Time(s) x 104

Fig. 6. Output temperature dynamic response.

5. Conclusions

To facilitate valid control strategy design and analysis of sys-
tem stability, a fuzzy modeling study of MCFC is reported in this
paper. An offline identification method for T-S fuzzy model is
presented consists of the if-part identification and the then-part
identification with a novel way to determine satisfactory num-
ber of fuzzy rules. It is shown that the identified MIMO T-S
fuzzy model of MCFC is more attractive in that it avoids using
complicated differential equations to describe the stack, and the
inputs—outputs static and dynamic characteristics of a MCFC
stack can be predicted. In the future, based on this T-S fuzzy
model, some control scheme studies such as predictive control
and robust control can be developed. In addition, an online iden-
tification algorithm for T-S fuzzy model with more variables can
be considered.
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