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bstract

This paper reports a nonlinear fuzzy modeling study of a molten carbonate fuel cell (MCFC) stack by an identification method. MCFC is a
omplex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. The Takagi–Sugeno (T–S)
uzzy model is suitable to model a large class of nonlinear MIMO system. In this paper, a MIMO T–S fuzzy model is used to represent MCFC. An
dentification method is used to determine both the nonlinear parameters of the antecedents and the linear parameters of the rules consequent in the

–S fuzzy model. The simulation tests reveal that obtained T–S fuzzy model using the identification method can efficiently approximate the static
nd dynamic behavior of a MCFC stack. Furthermore, based on this proposed T–S fuzzy model, valid control strategy studies such as predictive
ontrol, robust control can be developed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The molten carbonate fuel cell (MCFC) is an energy conver-
ion device that produces electricity by the indirect combination
f hydrogen and oxygen to water via an electron-carrying elec-
rolyte. MCFC is one of the fuel cell technologies that have
roven efficiency and environmental performance [1]. In the
evelopment of fuel cell technologies, the mathematical model-
ng is an important tool, which has the capability of predicting
he fuel cell performance [2]. The results obtained from a reliable
nd effective model can be very useful to guide future research
or fuel cell improvements and optimization. At the same time an
ffective model of the MCFC stack, is a prerequisite for control
nalysis and controller design.

As far as we known, the MCFC is a nonlinear multi-input
nd multi-output system. It is very difficult to model the MCFC
ystem by the traditional methods. During the last several
ecades, various mathematical models have been established

n the research on the internal mechanisms, ranging from a one-
imensional model to a three dimensional model [3–5]. These
odels are very useful for cell design and performance analy-
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is. However, these models are too complicated to be used for
ontrol studies.

To meet the demands of developing valid control strategies,
ome researchers have attempted to establish novel fuel cell
odels by statistical data-driven approach. The artificial neu-

al network (ANN) has been used to derive a solid oxide fuel
ell (SOFC) model from the experimental data quickly [2]. Shen
t al. [6] proposed a RBF neural networks identification technol-
gy to set up the nonlinear temperature model of MCFC stack.
emei et al. [7] utilized ANN methodology for proton exchange
embrane fuel cell (PEMFC) model. The AutoRegression with

xogenous signal (ARX) identification algorithm was applied
o computer linear SOFC system models [8]. The Hammerstein
onlinear system approach was used for identification of the
OFC model [9]. The support vector machine (SVM) was used

o modeling study of the PEMFC and SOFC system [10,11].
owever, most of modeling methods are in the point of steady-

tate models (I–V characteristics) or the single output, and these
lack-box models do not give much insight into the system being
odeled.
Fuzzy models have proved to be useful in nonlinear dynamic
ystem modeling. Several modeling methods based on fuzzy
easoning have been proposed in recent years, which can be
oughly classified into the fuzzy relational model, the neural-
etwork-based fuzzy model, the T–S fuzzy model and the

mailto:yangfantracy@hotmail.com
dx.doi.org/10.1016/j.jpowsour.2007.01.062
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Nomenclature

AR frequent factor of the resistance
ARa , AD, AE coefficients of the cell inherent perfor-

mance
Ca(c) total concentration of anode (cathode)
Cs

p heat capacity of the cell unit (J (kg K)−1)
E thermodynamic voltage (V)
E0 reversible potential of the cell (V)
F Faraday constant (96,485 C mol−1)
F in

a (F in
c ) anode (cathode) total inlet mole flow (mol s−1)

F in
a,i(F

in
c,i) molar flow rates of the ith reactant at the cell

input of anode (cathode)
Fo

a,i(F
o
c,i) molar flow rates of the ith reactant at the cell

output of anode (cathode)
F r

a,i(F
r
c,i) reaction rate of the ith reactant of anode (cath-

ode)
ha(c) channel height of anode (cathode) (m)
h̄in

a,i(h̄
in
c,i) anode (cathode) inlet partial molar enthalpies

(J mol−1)
h̄o

i partial molar enthalpies at stack temperature
(J mol−1)

�HR, �Ha activation energy of internal resistance, and
�HO2 , �HCO2 anode and cathode gas

I current (A)
J current density (A m−2)
Ms mass of the cell unit (kg)
Ncell cell number
p gas pressure
Pdc stack dc power (W)
R gas constant (8.3145 J (mol K−1))
Ra,i(Rc,i) anode (cathode) total rate of production of

species (mol s−1)
Rohmic ohmic resistance (� m−2)
s cell active area (m2)
To stack solid average temperature (exit temperature)

(K)
T in

a (T in
c ) inlet temperature of anode (cathode) (K)

uf(uox) fuel (oxidant) utilization
Vdc cell voltage (V)
xin

a,i(x
in
c,i) anode (cathode) inlet mole fractions

xo
a,i(x

o
c,i) anode (cathode) outlet mole fractions
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• anode: H2 + CO3
2− → CO2 + H2O + 2e−

Ra =
[

−NcellI

2F

NcellI

2F

NcellI

2F
0 0

]

Za(Zc) impedance for electrode polarization of anode

(cathode) (� m−2)

uzzy basis function based model. Compared with other mod-
ls, the T–S model needs less rules, each rule’s consequence
ith linear function can describe the input–output mapping in
large range, and the fuzzy implication used in the model

s also simple [12]. Takagi–Sugeno (T–S) fuzzy model has
he ability to approximate a large class of static and dynam-

cal MIMO nonlinear systems. There exist a large number
f research papers on the application of model identifica-
ion successfully and control strategies for T–S fuzzy model
13–15]. However, the concrete study of modeling multivari-
ources 166 (2007) 354–361 355

te MCFC using T–S fuzzy model cannot be found in prior
apers.

In this paper, a nonlinear MIMO T–S fuzzy modeling of a
olten carbonate fuel cell (MCFC) stack is built with an iden-

ification method. T–S fuzzy model consists of if–then rules
ith fuzzy antecedents and mathematical functions in the con-

equent part. Antecedent identification by which the MCFC
nputs–outputs variable space is divided into many subspaces
rules) is implemented based on the principle of Fuzzy C-Means
lustering method. In every rule, the consequent part parame-
ers that make the nonlinear MCFC characteristic to be fitted
y a linear model are identified by using the Kalman filtering
lgorithm. In the process of fuzzy modeling, a novel way is intro-
uced to determine satisfactory number of rules. In our study, the
roposed MIMO T–S fuzzy model of MCFC is built with data
btained from a physical model of 10 kW MCFC. The encourag-
ng results from this study demonstrate that there is a potential to
ntroduce the nonlinear fuzzy modeling to development of fuel
ells by the data obtained from various fuel cell experiments in
he future application.

. MCFC dynamic physical model

The proposed model is based on the following assumptions:

1) Stream mixture thermodynamic properties follow the ideal
gas mixture law.

2) A uniform gas distribution among cells is supposed.
3) All cells have the same temperature and current density.
4) Fuel processor dynamics are not considered.

.1. Electrochemical model

The basic structure of a single cell is shown in Fig. 1. There
re two main sets of chemical kinetics. This chemical kinetics
re those associated with anode reactions, cathode reactions.
n the following equations, R vector is used to represent rate
respectively) of five individual species, which are hydrogen,
arbon dioxide, water, oxygen and nitrogen.
Fig. 1. Principle of electricity generating in a MCFC single cell.
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I = Js (1)

NcellVaCa
dxo

a,i

dt
= F in

a,i − Fo
a,i + F r

a,i = F in
a xin

a,i

−
(

F in
a +

5∑
i=1

Ra,i

)
xo

a,i + Ra,i (2)

cathode: 2e− + CO2 + 1
2 O2 → CO3

2−

Rc =
[

0 −NcellI

2F
0 −NcellI

4F
0

]

NcellVcCc
dxo

c,i

dt
= F in

c,i − Fo
c,i + F r

c,i = F in
c xin

c,i

−
(

F in
c +

5∑
i=1

Rc,i

)
xo

c,i + Rc,i (3)

here using the ideal gas law, the exit stream total concentration
ecomes Ca(c) = pa(c)/RTo. The compartment volume Va(c) equals
o sha(c). The fuel utilization uf = NcellJs/2FF in

a xin
a,H2

.

.2. Thermal model

The fuel cell power output is closely related to the temper-
ture of the cell unit. Assuming that energy accumulates only
n the stack solid mass, gas mixtures are ideal, and exit stream
emperatures are equal to the solid stack temperature, the energy
onservation equation is [16]:

sCs
p

dT o

dt
= F in

a

[
5∑

i=1

xin
a,i(h̄

in
a,i − h̄o

i )

]
−

5∑
i=1

h̄o
i Ra,i

+ F in
c

[
5∑

i=1

xin
c,i(h̄

in
c,i − h̄o

i )

]

−
5∑

i=1

h̄o
i Rc,i − Qloss − Pdc (4)

nder the ideal gas supposition, the partial molar enthalpies are
alculated by the formulation:

¯
i = h̄ref

i +
∫ T

Tref

cp,i(u) du (5)

nd the coefficients of the specific heats cp,i are encountered in
tandard reference tables:

p,i = ai + biT + ciT
2 + diT

3 + eiT
4 (6)
.3. Operating cell voltage

The empirical relationships developed in previously reported
ork [17] are employed to estimate a voltage drop in a fuel cell.

w
{
t
b

ources 166 (2007) 354–361

The cell-unit performance of the electric power generation is
xpressed:

dc = E − (Rohmic − Za − Zc)J (7)

here E is given by the Nernst potential:

= E0 + RT

2F
ln

pH2,ap
1/2
O2,cpCO2,c

pH2O,apCO2,a
(8)

nd

0 = 4184 × [58.3 − (0.0113 + 9.6 × 10−7T )T ]

2F
(9)

ohmic = AR exp

(
−�HR

RT

)
(10)

a = ARaT exp

(
−�Ha

RT

)
p−0.5

H2,a
(11)

c = ADT exp

(
−�HO2

RT

)
p−0.75

O2
p0.5

CO2

+ AET exp

(
−�HCO2

RT

)
p−1.0

CO2
(12)

In Eqs. (8)–(12), T is the arithmetic average of cathode
nlet and exit temperature. Anode and cathode partial pres-
ures are arithmetic averages of inlet and exit gas partial
ressures:

= T in
c + T o

2
(13)

a(c),i = xin
a(c),i + xo

a(c),i

2pa(c)/patm
(14)

. T–S fuzzy modeling

.1. Problem formulation

We consider a MCFC system G(U, Y) as a MIMO sys-
em, let u(u ∈ U ⊆ Rr) be input variable and y(y ∈ Y ⊆ Rq)
utput variable. For the MIMO system, it can be divided into
multi-input and single output (MISO) system, and each of
ISO can be fit by a fuzzy T–S model independently [14]. We

efine:

uj(k)}nuj
0 = [uj(k), . . . , uj(k − nuj + 1)] (j = 1, . . . , r),

yl(k)}nyl0 = [yl(k), . . . , yl(k − nul
+ 1)] (l = 1, . . . , q)

ith nuj and nyl
are the order of uj and yl, respectively, then

ach MISO subsystem can be denoted as follows:

l(k + 1) = f (x(k)) (l = 1, . . . , q) (15)
ith x(k) = [{u1(k)}nu10 , . . . , {ur(k)}nur
0 , {y1(k)}ny10 , . . . ,

yq(k)}nyq
0 ] = [xk1 , . . . , xkn ] is the regression data vec-

or consisting of input–output data at the kth instant and
efore.
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The T–S fuzzy model with linear consequents employed to
t the MISO subsystem in this paper is a collection of fuzzy
ules, which is in the form of “If . . . then . . .” The ith rule of the
th output ŷl,i(k + 1) is given by:

Rl,i: If x(k) is Al
i, then

ˆ l,i(k + 1) = pl
i,0 + pl

i,1xk1 + · · · + pl
i,nxkn (i = 1, . . . , c)

(16)

here c is the number of rules, and Al
i = {Al

i,1, . . . , A
l
i,n} is

he set of membership functions associated to the ith rule. pl
i =

pl
i,0, p

l
i,1, . . . , p

l
i,n] is the parameter vector of the ith submodel

rule).
If the method of product fuzzy inference and weighted mean

s employed, the output of the T–S fuzzy model is inferred as
ollows:

ˆ l(k + 1) =
∑c

i=1μi(k)ŷl,i(k + 1)∑c
i=1μi(k)

(17)

i(k) =
n∏

j=1

μi,j(k) (18)

here μi,j(k) is the match degree of the component xkj with
espect to Al

i,k. μi(k) is the match degree of x(k) with respect

o Al
i, namely the membership degree of x(k) in the ith

ule.
The antecedent part of “If . . .” in the form of fuzzy set, is

qual to fuzzy partition of data space of the MCFC plant, and the
onsequent part of “then . . .” represented by a linear functional
elation, is a linear composition of input–output variables. The
dentification problem that we want to solve is to find the fuzzy

CFC model of reasonable complexity that minimizes the error
ariance between the fuzzy MCFC model output and the real
CFC stack output. In this model, what is to be partitioned is the
hole space spanned by regression data vectors. We separate the

dentification of the fuzzy model into two parts—antecedent and
onsequent identification. All the subsystems (yl(k + 1) = f(x(k)),
= 1, . . ., q) can be identified independently in the same
ay, so the subscription l is omitted in the following
escription.

h =

⎡
⎢⎢⎢⎢⎣

β11 . . . β1c . . . x1

β21 . . . β2c . . . x2

...
...

βN1 . . . βNc . . . xN
.2. Antecedent if-part identification

Antecedent identification is implemented by fuzzy clustering
ased on the principle of Fuzzy C-Means (FCM) algorithm. Let

T
(

ources 166 (2007) 354–361 357

xk: k = 1, . . ., N} be a set of N sample data from the real plant.
ach sample xk = [xk1 , xk2 , . . . , xkn ] has n components.

The FCM algorithm was introduced by Bezdek [18]. In this
aper, FCM algorithm is used to partition the collection of N
ata from real MCFC stack into c fuzzy clusters. In the fuzzy
odeling, the c means the number of fuzzy rules. The idea of
CM is using the weights that minimize the total weighted mean-
quare error:

(μ, V ) =
N∑

k=1

c∑
i=1

(μi,k)md2
ik =

N∑
k=1

c∑
i=1

(μi,k)m||xk − vi||2

(19)

here μi,k is the membership degree of the kth sample in
he ith cluster. μ is the matrix μ = {μi,k} which satisfies:
i,k ∈ [0, 1],

∑c
i=1μi,k = 1. The exponent m is a real number

reater than unity. V = [v1, v2, . . . , vc] represents the center of
ach cluster. The dik is the distance from xk tovi. Local minimiza-
ion of the function J is accomplished by repeatedly adjusting
he values of μi,k and vi according to the following relation:

i,k = 1∑c
j=1(dik/djk)2/m−1 (20)

i =
∑N

k=1μ
m
i,kxk∑N

k=1μ
m
i,k

(21)

.3. Consequent then-part identification

The consequent part of the fuzzy rule is identified by using
he Kalman filtering algorithm.

Given the data xk where k represents the kth sampling, the
k + 1)th predictive output ŷ(k + 1) of fuzzy model, can be
btained by formulation (17). Let βki = μi(k)/

∑c
i=1μi(k), then

ŷ(k + 1) can be written as:

ˆ (k + 1) =
c∑
i

βki (pi0 + pi1xk1 + · · · + pinxkn ) (22)

hile xk = [xk1 , xk2 , . . . , xkn ] (k = 1, 2, . . ., N) represent the
ata of n dimension input variables of MCFC, and Y = [y1,
2, . . ., yN]′ are the outputs, and the βk = (βk1 , βk2 , . . . , βkc ) can
e calculated. The outputs can be expressed from (22) using the
atrix form as follows:

= hP (23)

. . . x11β1c . . . x1nβ11 . . . x1nβ1c

. . . x21β2c . . . x2nβ21 . . . x2nβ2c

...
...

...

1 . . . xN1βNc . . . xNnβN1 . . . xNnβNc

⎤
⎥⎥⎥⎥⎦

N×c(n+1)

(24)

= [p10, p20, . . . , pc0, p11, p21, . . . , pc1, . . . , p1n,
p2n, . . . , pcn]′c(n+1)×1 (25)

he consequent parameter vector P can be estimate by Eq.
23). To void the computationally expensive matrix inversion
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peration, the Kalman filtering algorithm is applied in this
aper. The Kalman filtering algorithm enables calculation of
he new, adapted values of parameters of the antecedent part,
n the basis of the new sample and the known parameter values
19]. Here, we apply it to calculate the parameter vector P as
ollows:

ˆ
k+1 = P̂k + Sk+1h

′
k+1(yk+1 − hk+1P̂k)

Q + hk+1Skh
′
k+1

(26)

k+1 = Sk − Skh
′
k+1hk+1Sk

Q + hk+1Skh
′
k+1

(27)

= 0, 1, 2, . . . , N − 1 (28)

here P̂k is the estimated parameter vector. P̂0 is zero vector. The
k+1 is the (k + 1)th row of matrix h, and yk+1 is the real output
f (k + 1)th sample point. S0 = αI (I is an identity matrix and α is
large positive number), and Q = exp(−N/z) (N represents the

teration counter and z is a constant).

.4. Fuzzy modeling procedure

The number of fuzzy rules is an important factor that affects
he performance of a fuzzy model. The choice of an appropri-
te number of rules is crucial to the design of fuzzy systems
ecause practical considerations usually need to keep the num-
er of rules as low as possible to reduce complexity. While
oo many redundant rules result in a complex fuzzy model and
ncrease difficulties of implement, too few rules produce the
uzzy model cannot approximate a real plant. In the paper, the
luster number c in FCM algorithm corresponds to the number of
If . . . then” rules. However, for many kinds of clustering meth-
ds, including FCM algorithm, clustering number c is always
eeded in advance. Here, a novel way [15] to determine the
luster number (namely the number of fuzzy rules) is intro-
uced to the fuzzy modeling. Let the clustering method start
ith c = 2. Then determine whether a new cluster center should
e increased or not by evaluating modeling results. Root mean
quared error (RMSE) is employed here to evaluate modeling
esults:

MSE =
√√√√ 1

N

N∑
k=1

(ŷk − yk)2 (29)

here N is the number of sample data from the real MCFC stack,
ˆk is the predictive output of fuzzy model and yk is the output of
he real MCFC stack. If the modeling result is not satisfied, from
he given sample data, a sample xk that is most different from
he existing cluster centers V = [v1, v2, . . . , vc] can be fined as
new center vc+1. Where the following definition for vc+1:⎛

⎜⎜
⎞
⎟⎟
c+1 = xk

⎜⎜⎜⎜⎝
k = argkmin

∑
1 ≤ i, j ≤ c

i �= j

(μik − μjk)
⎟⎟⎟⎟⎠

(30) m
e
s
c

Fig. 2. Flowchart of the fuzzy modeling method.

Start with V = [v1, v2, . . . , vc+1] as initial cluster centers,
nd compute the new not-random partition matrix μ0. Then
CM algorithm is applied to divide the sample data into c + 1
arts again. Do the above steps again until the result is sat-
sfactory. Then the T–S fuzzy model can be obtained by the
ntecedent and consequent identification methods. The basic
esign steps of the modeling method are depicted in Fig. 2.

. Results

As we know, output voltage and the temperature are the core
f any fuel cell modeling. For a given MIMO MCFC stack, the
utput voltage and the temperature are influenced by many oper-
ting parameters such as current density, temperature, pressure,
uel utilization (uf), oxidant utilization (uox), and gas flows, etc.
owever, in practice, the gas flows must vary within the allow-

ble gas utilization range considering the safe operating areas
f a plant. Up to now, no model has ever been able to accom-

odate all these operating parameters. Our T–S model is no

xception. In our experiment, the MCFC can be regarded as a
ystem with two-input (uf, uox) and two-output (Vdc, To), and
urrent density J is considered to be a disturbance and other
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Table 1
Parameters of the MCFC stack used in the fuzzy modeling

Parameter Unit Value

Ncell 25
Pdc kW 10
J A m−2 100–1800
Vdc V Variable
uf 0.4–0.9
uox 0.1–0.8
s m2 0.4
ha m 1.2 × 10−3

hc m 2 × 10−3

Cs
p kg m−3 7900

AR 6.43 × 10−2

�HR kJ mol−1 −25.5
ARa 8.11 × 10−9

�Ha kJ mol−1 −74.4
AD 2.10 × 10−10

�HO2 kJ mol−1 −83.4
AE 1.58 × 10−5

�HCO2 kJ mol−1 −7.12
T in

a K 873
T in

c K 823
xin

a,H2
Mole fraction 0.64

xin
a,CO2

Mole fraction 0.2
xin

a,H2O Mole fraction 0.16
xin

c,CO2
Mole fraction 0.3

xin

x

i
r

F. Yang et al. / Journal of Po

perating parameters are held constant. Define the following
nput–output relations:

ˆVdc (k + 1) = f (uf(k), uox(k), J(k), yVdc (k)) (31)

ˆT o (k + 1) = f (uf(k), uox(k), J(k), yT o (k)) (32)

here ŷVdc , ŷT o are the predictive outputs of fuzzy model and
Vdc , yT o are the outputs from the real MCFC stack. The order
f inputs and outputs can be increased according to a concrete
ystem. This above simplification does not impair the valid-
ty of our study, which is aimed at modeling MCFC by the
roposed method in this paper. The proposed fuzzy modeling
ethod is used to identify a T–S fuzzy model of MCFC based

n simulation data.

.1. Preparing simulation data

The 10 kW MCFC stack is used in the simulation. The stack
onsists of 25 cells with the anode and cathode in co-flow. The
ffective electrolyte area of the cell is 0.4 m2, and the electrolyte
ile between anode and cathode consists of mixed carbonate of
i2CO3 and K2CO3. The compositions of fuel and oxidant are
et at constant values. The dynamic physical model as shown in
ection 2 replaces the real MCFC stack to generate the simula-

ion data required for the identification of the T–S fuzzy model.
he parameters of this fuel cell are given in Table 1. The data
ources blocks developed in MATLAB based on Section 2 is
hown in Fig. 3. For the purpose of identification, the dynamic
hysical model is excited with uniformly random input signals
ncluded the fuel utilization (40–90%), the oxidant utilization
10–80%), and the current density (100–1800 A m−2). To obtain

alues at integer time points, the fourth-order Runge–Kutta
ethod was used to find the numerical solution to the dynamic

hysical model in the simulation. A set of 10,000 data was col-
ected from the simulation. The first 6000 data were used for the

4

s

Fig. 3. Data sources of T–
c,N2
Mole fraction 0.553

in
c,O2

Mole fraction 0.147

dentification of a T–S fuzzy model of the fuel cell, while the
emaining 4000 data were used for validation purposes.
.2. Predicting with the MIMO T–S fuzzy model

The parameters pre-specified in the modeling method as
hown in Section 3.4 are the exponent m = 2, stop criterion

S fuzzy modeling.
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Fig. 4. J–Vdc chart.

= 0.15, and α = 109. After fuzzy modeling of Section 3.4, a
–S fuzzy model is obtained, which can be used to predict new

nput data. The estimated optimal number of fuzzy rules is equal
o 12. The RMSE of output voltage obtained in training and test
rocess is 0.1028 and 0.1172 respectively. The RMSE of temper-
ture obtained in training and test process is 0.1249 and 0.1283
espectively. The static J–Vdc characteristics generated by the
–S fuzzy model showed good consistency with the physical
odel under various utilization, as can be seen in Fig. 4. Now

he T–S fuzzy model is used to predict the dynamic characteris-
ics of the physical model. The step changes in the stack current
ensity (from 1000 A m−2 to 1500 A m−2) and fuel utilization
from 80% to 85%) are applied with 50% oxidant utilization. The
omparison between predicted (T–S model) and experimental
physical model) output voltage dynamic curves is represented
n Fig. 5. At the same time, the predicted and experimental tem-
eratures are shown in Fig. 6. From Figs. 4–6, we can see the

btained MIMO T–S fuzzy model can approximate the static
nd dynamic behavior of the physical MCFC model with good
ccuracy.

Fig. 5. Output voltage dynamic response.

R

[

[

[
[

Fig. 6. Output temperature dynamic response.

. Conclusions

To facilitate valid control strategy design and analysis of sys-
em stability, a fuzzy modeling study of MCFC is reported in this
aper. An offline identification method for T–S fuzzy model is
resented consists of the if-part identification and the then-part
dentification with a novel way to determine satisfactory num-
er of fuzzy rules. It is shown that the identified MIMO T–S
uzzy model of MCFC is more attractive in that it avoids using
omplicated differential equations to describe the stack, and the
nputs–outputs static and dynamic characteristics of a MCFC
tack can be predicted. In the future, based on this T–S fuzzy
odel, some control scheme studies such as predictive control

nd robust control can be developed. In addition, an online iden-
ification algorithm for T–S fuzzy model with more variables can
e considered.
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